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Abstract Factorization of polynomials is one of the foundations of symbolic computation. Its appli-

cations arise in numerous branches of mathematics and other sciences. However, the present advanced

programming languages such as C++ and J++, do not support symbolic computation directly. Hence,

it leads to difficulties in applying factorization in engineering fields. In this paper, the authors present

an algorithm which use numerical method to obtain exact factors of a bivariate polynomial with ratio-

nal coefficients. The proposed method can be directly implemented in efficient programming language

such C++ together with the GNU Multiple-Precision Library. In addition, the numerical computation

part often only requires double precision and is easily parallelizable.

Keywords Factorization of multivariate polynomials, interpolation methods, minimal polynomial,

numerical continuation.

1 Introduction

Polynomial factorization plays a significant role in many problems including the simplifica-
tion, primary decomposition, factorized Gröbner basis, solving polynomial equations and some
engineering applications, etc. It has been studied for a long time and some high efficient al-
gorithms have been proposed. There are two types of factorization approaches. One is the
traditional polynomial factorization for exact input relying on symbolic computation, and the
other is approximate polynomial factorization for inexact input.

The traditional polynomial factorization methods follow Zassenhaus’ approach[1, 2]. First,
multivariate polynomial factorization is reduced to bivariate factorization due to Bertini’s the-
orem and Hensel lifting[3, 4]. Then one of the two remaining variables is specialized at random.
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The resulting univariate polynomial is factored and its factors are lifted up to a high enough
precision. At last, the lifted factors are recombined to get the factors of the original polyno-
mial. We refer to a series work of Lecerf[5–9] for the recent progress of this routine. In addition,
Weimann[10] presented a factorization method without using Hensel lifting. For factoring sparse
bivariate polynomials, we refer to [11–14] and references therein.

Approximate factorization is a natural extension of conventional polynomial factorization.
It adapts factorization problem to linear algebra first, then applies numerical methods to obtain
an approximate factorization in complex which is the exact absolute factorization of a nearby
problem. In 1985, Kaltofen and Yagati presented an algorithm for computing the absolute irre-
ducible factorization by floating point arithmetic[15]. Historically, the concept of approximate
factorization appeared first in a paper on control theory[16]. The algorithm is as follows: 1)
Represent the two factors G and H of the polynomials F with unknown coefficients by fixing
their terms; 2) Determine the numerical coefficients so as to minimize ‖F − GH‖. Huang, et
al.[17] pursued this approach, but it seems to be rarely successful, unless G or H is a poly-
nomial of several terms. In 1991, Sasaki, et al. proposed a modern algorithm[18], which use
power-series roots to find approximate factors. This algorithm is successful for polynomials of
small degrees. Subsequently, Sasaki, et al. presented another algorithm[19] which utilizes zero-
sum relations. The zero-sum relations are quite effective for determining approximate factors.
However, computation based on zero-sum relations is practically very time-consuming. In [20],
Sasaki presented an effective method to get as many zero-sum relations as possible by matrix
operations so that approximate factorization algorithm is improved. Meanwhile, Corless, et
al. proposed an algorithm for factoring bivariate approximate polynomial based on the idea of
decomposition of affine variety in [21]. However, it is not so efficient to generalize the algorithm
to multivariate case. Another numerical approach to factorize multivariate complex polyno-
mials is due to the work of numerical algebraic geometry by Sommese, et al.[22]. The authors
used the technique of linear trace and monodromy to decompose the complex variety of the
input polynomial which leads to absolute factorization by witness sets. A major breakthrough
in approximate factorization is due to Kaltofen, et al.[23, 24] who extended Gao’s work[25] from
symbolics to numerics based on Ruppert matrix and Singular Value Decomposition.

Symbolic factorization has been implemented in many Computer Algebra System. However,
it is difficult to implemented directly in Programming Language such as C++ and J++, be-
cause most of Programming Language standards do not support symbolic basic operators, and
the compilers do not implement the symbolic computation, on which symbolic factorization is
based. It restricts exact factorization from being applied in many engineering fields. Compared
with symbolic factorization, approximate factorization can be implemented more easily in the
popular programming languages. However, it only gives approximate results even the input
is exact. Fortunately, some work in the direction of symbolic-numeric methods for factoriza-
tion problem has been done. Rupprecht proposed a numerical strategy with a good practical
behavior to output exact result[26]. In [27], Chéze and Galligo have shown an exact absolute
factorization can be reduced to an approximate one if the accuracy is good enough. Following
this direction, in this paper, we propose an almost completely numerical algorithm, which is
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not only implemented directly in the programming languages, but also achieve exact results.
Except classic symbolic methods, some approaches have been proposed to obtain exact

output by approximation[28, 29]. The idea of obtaining exact polynomial factorization is from the
connect between an approximate root of a given polynomial and its minimal polynomial in Q.
Certainly, the minimal polynomial is a factor of the given input. Based on lattice basis reduced
algorithm LLL and Integer Relation algorithm PSLQ of a vectors respectively, there are two
algorithms for finding exact minimal polynomial of an algebraic number from its approximation.
One is a numerical algorithm[28, 30] for factorization of a univariate polynomial was provided
by Transcendental Evaluation and high-degree evaluation, and the other for factorization of
bivariate polynomial is based on LLL[31, 32]. But they are not efficient.

In this paper, we only discuss squarefree polynomials since factoring one polynomial that is
not squarefree can be reduced to factoring a squarefree one by computing gcd. Relying on LLL
algorithm, we present an almost-completely numerical method for exact factoring polynomial
with rational coefficient in Q. First, we choose a sample point in Qn−1 at random. After
specialization (i.e., substitution) at the point, the roots of the resulting univariate polynomial
can be found very efficiently up to arbitrarily high accuracy. Then applying minimal polynomial
algorithm to these roots yields an exact factorization of the univariate polynomial in Q. Next
we shall move the sample point in “good direction” to generate enough number of points by
using numerical continuation. Especially, for the rest sample points, the corresponding exact
factorization can be found by using the same combination of roots as found in the first step.
And these roots give more univariate polynomials for the next step. Finally, the multivariate
factorization can be obtained by interpolation.

The paper is organized as follows. Section 2 gives a brief introduction of the preparation
knowledge. Minimal polynomial algorithm will be discussed in Section 3. Then we present our
method in Sections 4, 5, and 6.

2 Preparation

In this section, we briefly introduce the background knowledge and related topics.

2.1 Homotopy Continuation Methods

Homotopy continuation methods play a fundamental role in Numerical Algebraic Geometry
and provide an efficient and stable way to compute all isolated roots of polynomial systems.
These methods have been implemented in many software packages, e.g., Hom4PS[33], Bertini[34],
PHCpack[35].

The basic idea is to embed the target system into a family of systems continuously depending
on parameters. Then each point in the parameter space corresponds to a set of solutions.
Suppose we know the solutions at a point. Then we can track the solutions from this starting
point to the point representing the target system we want to solve.

First let us look at the simplest case: A univariate polynomial f(z) with degree d. We
know that f(z) has d roots in C (counting multiplicities). Of course we can embed f(z) into
the family adz

d + ad−1z
d−1 + · · · + a0, where the ai are parameters. Now choose a start point
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corresponding to zd − 1 in this parameter space, whose roots are

z0
k = e2kπ

√−1/d, k = 0, 1, · · · , d − 1. (1)

Then we use a real straight line in the parameter space to connect zd − 1 with f(z):

H(z, t) := tf(z) + (1 − t)(zd − 1). (2)

This form is a subclass of the family depending on only one real parameter t ∈ [0, 1].
When t = 0 we have the start system H(z, 0) = zd − 1 and when t = 1 we have our target

system H(z, 1) = f(z). An important question is to show how to track individual solutions as
t changes from 0 to 1. Let us look at the tracking of the solution zk (the k-th root of f(z)).
When t changes from 0 to 1, it describes a curve, which is function of t, denoted by zk = zk(t).
So H(zk(t), t) ≡ 0 for all t ∈ [0, 1]. Consequently, we have

0 ≡ dH(zk(t), t)
dt

=
∂H(z, t)

∂z

dzk(t)
dt

+
∂H(z, t)

∂t
. (3)

This problem is reduced to an ode for the unknown function zk(t) together with an algebraic
constraint H(zk(t), t) ≡ 0. The initial condition is the start solution zk(0) = z0

k and zk(1) is a
solution of our target problem f(z) = 0.

Remark 2.1 In [36], Blum, et al. showed that on average an approximate root of a generic
polynomial system can be found in polynomial time. Also application of the polynomial cost
method for numerically solving differential algebraic equations, Ilie, et al.[37] gave polynomial
cost method for solving homotopies.

But there is a prerequisite for the continuous tracking: ∂H(z,t)
∂z �= 0 along the curve z = zk(t).

If the equations z − zk(t) = 0 and tf ′(z) + d(1 − t)zd−1 = 0 have intersection at some point
(t, zk(t)), then we cannot continue the tracking. There is way to avoid this singular case,
called the “gamma trick” that was first introduced in [38]. We know two complex curves
almost always have intersections at complex points, but here t must be real. So if we introduce
a random complex transformation to the second curve, the intersection points will become
complex points and such a singularity will not appear when t ∈ [0, 1). Let us introduce a
random angle θ ∈ [−π, π] and modify the homotopy (2) to

H(z, t) := tf(z) + eiθ(1 − t)(zd − 1). (4)

Obviously, the k-th starting solution is still z0
k in (1) and zk(1) is still a root of f(z).

2.2 Genericity and Probability One

In an idealized model where paths are tracked exactly and the random angle can be generated
to infinite precision, the homotopy (4) can be proved to succeed “with probability one”. To
clarify this statement, it is necessary to use a fundamental concept in algebraic geometry:
Genericity.

Definition 2.2 Let X be an irreducible algebraic variety. We say a property P holds
generically on X , if the set of points of X that do not satisfy P are contained in a proper
subvariety Y of X . The points in X\Y are called generic points.
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The set X\Y is called a Zariski open set of X . Roughly speaking, if Y is a proper subvariety
of an irreducible variety X and p is a random point on X with uniform probability distribution,
then the probability that p /∈ Y is one. So we can consider a random point as a generic point on
X without a precise description of Y . Many of the desirable behaviors of homotopy continuation
methods rely on this fact.

2.3 Coefficient-Parameter Homotopy

There are several versions of the Coefficient-Parameter theorem in [39]. Here we only state
the basic one.

Theorem 2.3 Let F (z; q) = {f1(z; q), f2(z; q), · · · , fn(z; q)} be a polynomial system in n

variables z and m parameters q. Let N (q) denote the number of nonsingular solutions as a
function of q:

N (q) := #
{

z ∈ Cn : F (z; q) = 0, det
(

∂F

∂z
(z; q)

)
�= 0

}
. (5)

Then,
1) there exists N , such that N (q) ≤ N for any q ∈ Cm. Also {q ∈ Cm : N (q) = N} is a

Zariski open set of Cm. The exceptional set Y = {q : N (q) < N} is an affine variety contained
in a variety with dimension m − 1.

2) the homotopy F (z; φ(t)) = 0 with φ(t) : [0, 1) → Cm\Y has N continuous non-singular
solution paths z(t).

3) when t → 1−, the limit of zk(t), k = 1, 2, · · · , N includes all the non-singular roots of
F (z; φ(1)).

An important question is how to choose a homotopy path φ(t) which can avoid the excep-
tional set Y . The following lemma gives an easy way to address this problem.

Lemma 2.4 (see [39]) Fix a point q and a proper algebraic set Y in Cm. For a generic
point p ∈ Cm, the one-real-dimensional open line segment φ(t) := (1 − t) p + t q, t ∈ [0, 1) is
contained in Cm\Y .

2.4 Reductions

Before factorization of a given polynomial, we shall first apply certain reductions to the
input to obtain a square-free polynomial over Q, which can remove multiplicities and ease the
computation of the roots. Also we can assume each factor involves all the variables and has
more than one term. Otherwise, we can compute the GCD to reduce the problem. For example,
let F = f(x, y)g(y). Then Fx = fxg and gcd(F, Fx) = g which gives us the factor g(y).

By the Hilbert Irreducibility theorem, we can further reduce the problem to univariate case
by random specialization of one variable to a rational number. More precisely, if f(x, y) is
irreducible in Q[x, y], then for a random rational number y0, f(x, y0) is also irreducible in the
ring Q[x] with a high probability[40]. However, it is difficult to know if y0 is a good specialization
point or not in advance.



248 FENG YONG, et al.

For univariate polynomial, there are symbolic methods to preform exact factorization in Q.
Here we are more interested in numeric methods, i.e., from approximate roots to exact factors.

3 Minimal Polynomial by Approximation

Here we recall some material of the paper[30]. There are two methods to compute the
minimal polynomial of an algebraic number from its approximation. One is based on the LLL
algorithm of the basis reduction[28], and another is based on PSLQ[30]. The later one is more
efficient than the former one. However, it can only compute the minimal polynomial of a real
algebraic number while the former one can find minimal polynomial of a complex algebraic
number. Hence, we introduce the former algorithm which is more suitable for this paper here.
We refer the reader to the paper[28] for more details.

Let p(x) =
∑n

i=0 pix
i be a polynomial. The length ||p|| of p(x) is defined as the Eu-

clidean norm of the vector (p0, p1, · · · , pn), and the height ||p||∞ as the L∞-norm of the vector
(p0, p1, · · · , pn). The degree and height of an algebraic number are defined as the degree and
height, respectively, of its minimal polynomial.

Suppose that we have upper bound d and H on the degree and height respectively of an
algebraic number with |α| ≤ 1, and a complex rational number α approximating α such that
|α| ≤ 1 and |α − α| < 2−s/(4d), where s is the smallest positive integer such that 2s >

2d2/2(d + 1)(3d+4)/2H2d.

Algorithm 1 (MiniPoly)
Input: An approximation α to α (unknown) satisfying the above error control

an upper bound, d, on the degree of α

an upper bound, H , on the height of α

Output: The exact minimal polynomial of α.

For n = 1, 2, · · · , d in succession, do the following steps

1) Construct ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0 2s · Re(α0) 2s · Im(α0)

0 1 0 · · · 0 2s · Re(α1) 2s · Im(α1)

0 0 1 · · · 0 2s · Re(α2) 2s · Im(α2)
...

...
...

. . .
...

...
...

0 0 0 · · · 1 2s · Re(αn) 2s · Im(αn)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (6)

where Re(a) and Im(a) stand for the real part and imaginary part, respectively, of complex
a, α0 = 1 and |αi−αi| ≤ 2−s−1/2 for i = 1, 2, · · · , n. Note αi can be computed by rounding
the powers of α to s bits after the binary points.

2) Denote by bi the row i + 1 of the matrix in (6). Apply the basic reduction algorithm to
lattice Ls = (b0, b1, · · · , bn), and obtain the reduced basis of the lattice.
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3) If the first basis vector ṽ = (v0, v1, · · · , vn, vn+1, vn+2) in the reduced basis satisfies |ṽ| ≤
2d/2(d + 1)H , then return polynomial v(x) =

∑n
i=0 vix

i as the minimal polynomial of
algebraic number α.

Note that it is no major restriction to consider α with |α| ≤ 1 only. In fact, if |α| > 1 satisfies
the polynomial h(x) =

∑d
i=0 hix

i, then 1/α satisfies the polynomial
∑d

i=0 hd−ix
i. Therefore, if∑d

i=0 hd−ix
i is computed, the h(x) is obtained. Furthermore, an ε-approximation α to α with

|α| > 1 easily yields a 3ε-approximation β to β = 1/α. This can be easily verified.
The following theorem shows the computation amount of calculating the minimal polynomial

of an algebraic number[28].

Theorem 3.1 Let α be an algebraic number, and let d and H be upper bounds on the
degree and height, respectively, of α. Suppose that we are given an approximation α to α such
that |α − α| ≤ 2−s/(12d), where s is the smallest positive integer such that

2s > 2d2/2(d + 1)(3d+4)/2H2d.

Then the minimal polynomial of α can be determined in O(n0 · d4(d + log H)) arithmetic oper-
ations on integers having O(d2 · (d + log H)) binary bits, where n0 is the degree of α.

4 Finding More Polynomials by Continuation

In the previous stage, we have the factors after specialization , which are univariate polyno-
mials. To construct the factor of two variables by using interpolation, we need more information,
i.e. specializations at more points. The main tool is the homotopy continuation method.

4.1 Applying Numerical Continuation to Factorization

Suppose an input polynomial F (x, y) is reducible. Geometrically, if C denotes the zero set
of f , i.e., the union of many curves in C2, removing the singular locus of C from each curve
Ci, the regular sets Si are connected in C2. Moreover, the singular locus has lower dimension,
consequently it is a set of isolated points.

Suppose f(x, y) is an irreducible factor of F in Q. Let y0, y1 be random rational numbers.
By the Hilbert Irreducibility theorem the univariate polynomials f0 = f(x, y0) and f1 = f(x, y1)
are irreducible as well. Suppose we know the roots of f0. Then we can choose a path to connect
y0 and y1 avoiding the singular locus which has measure zero. By the Coefficient-Parameter
theorem, all the roots of f1 can be obtained by the following homotopy continuations:

⎧⎨
⎩

f(x, y) = 0,

(1 − t)(y − y0) + t(y − y1)γ = 0.
(7)

Moreover any generic complex number γ implies that the homotopy path can avoid the singular
locus by Lemma 2.4 when we track the path.
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4.2 Control of the Precision

Let {x1, x2, · · · , xm} be the exact roots of f1 and g be the primitive polynomial of f1. Then

g = α

m∏
i=1

(x − xi) ∈ Z[x], (8)

for some integer number α.
Note that we only have the approximate roots {x̃1, x̃2, · · · , x̃m}.
Proposition 4.1 Let p =

∏m
i=1(x−xi) and p̃ =

∏m
i=1(x−x̃i). Let δ = maxi=1,2,··· ,m{|xi−

x̃i|} and r = maxi=1,2,··· ,m{|x̃i|}. If δ is sufficiently small. Then

||p̃− p||∞ ≤
(

max
i=1,2,··· ,m

{
ri−1

(
m − 1
i − 1

)}
m + 1

)
· δ. (9)

Proof Let xi = x̃i + δi. Thus, |δi| ≤ δ. The left hand side ||p̃ − p||∞ = ||∏m
i=1(x − xi +

δi) −
∏m

i=1(x − xi)|| = ||∑m
j=1

∏
i�=j(x − xj)δj || + o(δ). An upper bound of the coefficients of∏

i�=j(x−xj) with respect to xm−i is
(
m−1
i−1

)
ri−1. Hence, ||p̃−p||∞ ≤ maxi=1,2,··· ,m

(
m−1
i−1

)
ri−1 ·

mδ + δ.

Remark 4.2 A similar precision bound result was given in [27]. For some examples the
required precision might be high. But note that the homotopy continuation can still work
in double precision, instead of the precision bound, and the only assumption is the condition
number of the Jacobian matrix is good enough. But approximate roots given by homotopy
often need the Newton refine step where high precision must be satisfied. Secondly, we shall
point out that the homotopy paths are independent, so this stage is naturally parallizable.

Now let us consider how to find α. Suppose the input polynomial is F (x, y) and f is a
factor of F . The primitive polynomial of f(x, y1), which is g, must be a factor of the primitive
polynomial of F (x, y1). Thus, the leading coefficient of g must be a factor of the leading
coefficient of the primitive polynomial of F (x, y1). Let α be the leading coefficient of the
primitive polynomial of F (x, y1). Then let p = α

∏m
i=1(x− xi) ∈ Z[x]. Note that itself may not

be primitive, but its primitive polynomial is g.
Let M = maxi=1,2,··· ,m{i ri−1

(
m
i

)} + 1 and p̃ = α
∏m

i=1(x − x̃i). Thus, if δ < 1
2αM then

||p − p̃||∞ < 0.5. It means that we can round each coefficient of p̃ to the nearest integer to
obtain exact polynomial p which gives g.

4.3 Detecting the Degrees of Factors

After specialization at y = y0, we obtain the information about the number of factors and
the degree of each factor with respect to x. The degrees with respect to y of factors provide
the bound of the number of interpolation nodes. Certainly, we can use the degree of the input
degy(F ) as the bound. However, the degrees with respect to y of factors are usually much less
than degy(F ), especially when there are many factors. Therefore, for high efficiency, it is better
to know the degree with respect to y of each factor.
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We define the notation of 2-tuple degree to be

deg(F ) = [degx(F ), degy(F )].

Suppose deg(F ) = [m, n] and F has r factors. Applying an approach of univariate polynomial
solving to F (x, y0) and F (x0, y) yields points on the curve A = {(x1, y0), (x2, y0), · · · , (xm, y0)}
and B = {(x0, y1), (x0, y2), · · · , (x0, yn)}, respectively. In addition, we also know the decompo-
sition of two points sets in r groups with cardinalities {a1, a2, · · · , ar} and {b1, b2, · · · , br} by
minimal polynomials. Moreover

∑
ai = m and

∑
bi = n and m ≥ r, n ≥ r. One way to obtain

the degree information is to apply numerical continuation to pair the groups, which is similar
to “point membership test”[39].

Choose one point from each group of the first set A. Starting from these points, we track
the homotopy path ⎧⎨

⎩
F (x, y) = 0,

(1 − t)(y − y0) + t(x − x0)γ = 0.
(10)

Because of the random choices of y0, x0, and γ, the path avoids the singular locus. When
t = 1, the finite endpoint must belong to the second set B. For example if the starting point
of the first group of A and its end point belongs to the ith group of B. Then we know the
first factor has degree [a1, bi]. Similarly, the degrees of other factors can be detected in the
same way. However, if degy(F ) and degx(F ) are less than the total degree of F , the end point
may diverge. In our examples, it works very well, but there is no theoretical guarantee for the
success.

An alternative way which can easily avoid group pairing is the change of coordinates
⎛
⎝ x

y

⎞
⎠ = A ·

⎛
⎝ x̂

ŷ

⎞
⎠ , (11)

where A is a random 2 × 2 matrix over Q.
Then the degree of each factor with respect to x̂ and ŷ must be same and is equal to the

total degree of this factor. For instance, if F (x, y0) has r factors in Q with degree d1, d2, · · · , dr

respectively. Then immediately we know that the degree of the factor fi(x, y) must have the
2-tuple degree (di, di) without any cost. Because we only consider general polynomials and
ignore the sparse structure, the change of coordinates is suitable in this article.

5 Interpolation

Polynomial interpolation is a classical numerical method. It is studied very well for uni-
variate polynomials in numerical computation. Polynomial interpolation problem is to de-
termine a polynomial f(x) ∈ F [x] with degree not greater than n ∈ N for a given pairs
{(xi, fi), i = 0, 1, · · · , n} satisfying f(xi) = fi for i = 0, 1, · · · , n, where F is a field and
xi, fi ∈ F . In general, there are four types of polynomial interpolation method: Lagrange
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Interpolation, Neville’s Interpolation, Newton’s Interpolation, and Hermite Interpolation. La-
grange interpolation and Newton’s Interpolation formula are suited for obtaining interpolation
polynomial for a given set {(xi, fi), i = 0, 1, · · · , n}. Neville’s interpolation method aims at
determining the value of the interpolating polynomial at some point. If the interpolating prob-
lem prescribes at each interpolation point {xi, i = 0, 1, · · · , n} not only the value but also the
derivatives of desired polynomial, then the Hermite formula is preferred.

Different from the traditional interpolation problem above, our problem is to construct a
bivariate polynomial from a sequence of univariate polynomials at chosen nodes. It is important
to point out that the univariate polynomials are constructed by roots, which may not be equal
to the polynomials by substitutions. But the only difference for each polynomial is just a scaling
constant.

More precisely, in this paper, we aim to solve a special polynomial interpolation problem:
Given a set of nodes and square free polynomials {(yi ∈ F, fi(x) ∈ F [x]), i = 0, 1, · · · , k},
compute a square free polynomial f(x, y) ∈ F [x, y] of degree with respect to x not greater than
n, where F is a field, such that f(x, yi) and fi(x) have the same roots.

5.1 Illustrative Examples

Example 5.1 Let f = x2 +y2−1. Since its degree with respect to y is two, we need three
interpolation nodes which are y = −1/2, 0, 1/2. Suppose we know the roots at each node, then
the interpolating polynomials are {f0 = x2 − 3/4, f1 = x2 − 1, f2 = x2 − 3/4}. To construct
original polynomial f , we can use Lagrange method. Let �1 = y(y−1/2)

(−1/2−0)(−1/2−1/2) = 2y2 − y.
Similarly, �2 = −4y2 + 1 and �3 = 2y2 + y. It is easy to check that (x2 − 3/4)�1 + (x2 − 1)�2 +
(x2 − 3/4)�3 = f .

In the example above, the coefficient of f with respect to x2 is a constant 1. Making the
interpolating polynomials given by (8) monic, we can construct f correctly by Lagrange basis.
However, if the coefficient is nonconstant, i.e., a polynomial of y, then it is not straightforward
to find f . The example below shows this problem.

Example 5.2 Let f = xy − 1. The nodes are y = 2, 3. We know the roots are 1/2, 1/3
respectively at the nodes. Then the monic interpolating polynomials are {x−1/2, x−1/3}. If we
still apply Lagrange basis �1 = −y+3, �2 = y−2, it gives (x−1/2)(−y+3)+(x−1/3)(y−2) =
x + 1/6 y − 5/6 which is totally different from the target polynomial xy − 1.

The basic reason is that the interpolating polynomials are not the polynomials after special-
izations, and the only difference is certain scaling constants. To find these constants, we need
more information.

Now we use one more node: When y = 4, the monic interpolating polynomial is x − 1/4.
By multiplying a scaling constant to f we can assume f(x, 4) = x − 1/4, then there exist
a, b such that f(x, 2) = a(x − 1/2) and f(x, 3) = b(x − 1/3). The corresponding Lagrange
bases are �1 = (y − 3)(y − 4)/2, �2 = −(y − 2)(y − 4), �3 = (y − 2)(y − 3)/2. Then f =
a(x− 1/2)�1 + b(x− 1/3)�2 + (x− 1/4)�3. The coefficient of f with respect to y2 must be zero.
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Consequently we have

1
2

(
x − 1

2

)
a +

(
x − 1

3

)
b +

1
2

x − 1
8

= 0, (12)

which implies a linear system

1
2

a − b +
1
2

= 0,−1
4

a +
1
3

b − 1
8

= 0.

The solution is a = 1/2, b = 3/4. Substituting them back to two nodes interpolation formula
yields the polynomial we need, up to a constant 1/4:

1
2

(
x − 1

2

)
(−y + 3) +

3
4

(
x − 1

3

)
(y − 2) =

1
4
(xy − 1).

5.2 Interpolation with Indeterminates

To extend the idea in Example 5.2, we present a method to construct desired bivariate
polynomial by using monic univariate interpolating polynomials.

Suppose f is irreducible and its degrees with respect to x and y are m and n, respectively.
Consider x as the main variable, we can express this polynomial by f =

∑m
i=0 ci(y)xi, where

ci are polynomials of y of degree less than or equal to n. We can consider each ci as a vector
in monomial basis. Suppose there are r linearly independent coefficients. If r = 1, then
ci(y) = aic0(y) for some constant ai and f = (

∑m
i=0 aix

i) · c0(y). It contradicts the assumption
that f is irreducible. Hence, r ≥ 2.

Now we consider how to construct f by using the interpolating polynomials

{f0(x), f1(x), · · · , fk(x)}

at k + 1 nodes {y0, y1, · · · , yk} respectively chosen at random.
Let C be a (k + 1) × (m + 1) matrix [c0, c1, · · · , cm], where ci is the column vector in

monomial basis {yk, yk−1, · · · , 1} of the polynomial ci. Let V be the Vandermonde matrix
⎛
⎜⎜⎜⎜⎜⎜⎝

yk
0 yk−1

0 · · · 1

yk
1 yk−1

1 · · · 1
...

...
. . .

...

yk
k yk−1

k · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Let A be a (k + 1) × (m + 1) matrix, where Aij is the coefficient of the ith interpolating
polynomial with respect to xj . To make the solution unique, we may fix f(x, y0) = f0 and
suppose f(x, yi) = λifi and λi �= 0 for i = 1, 2, · · · , k. Let Λ = diag(1, λ1, λ2, · · · , λk).

Therefore,
V · C = Λ · A. (13)

Since {yi} are distinct, the Vandermonde matrix has inverse and consequently C = V −1·Λ·A.
By our assumption, the degree with respect to y is n. It means that the first k − n rows of C
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must be zero. The zero at the ith row and jth column corresponds an equation. Thus, it leads
to a linear system

Row(V −1, i) · Λ · Col(A, j) = 0, (14)

for 1 ≤ i ≤ k − n and 1 ≤ j ≤ m + 1 with k unknowns.
Only r linearly independent columns in A, so there are (k−n) r equations and k unknowns.

The existence of the solution is due to the origination of the interpolating polynomials f(x, yi) =
λifi for i = 1, 2, · · · , k. The linear system has unique solution implies that (k −n)r ≥ k. Thus,
k ≥ rn/(r − 1). Let μ be the smallest integer greater than or equal to rn

r−1 , namely

μ =
⌈

rn

r − 1

⌉
. (15)

Thus, to determine the scaling constants {λi}, we need at least μ more interpolation nodes.
To find an upper bound for the number of nodes, let us consider f as a monic polynomial with

rational function coefficients. All the coefficients {cm, cm−1, · · · , c0} can be uniquely determined
by rational function interpolation of xm+cm−1/cmxm−1+· · ·+c0/cm at 2n+1 nodes. Therefore,
it requires 2n nodes except the initial one. Thus, we have μ ≤ k ≤ 2n.

But this upper bound is often overestimated, and for some special case the polynomial f

can be constructed by using less nodes.

Proposition 5.3 Let f be a polynomial in Q[x, y] and deg(f) = [m, n]. Suppose m ≥ n

and f has n + 1 linearly independent coefficients. Then f can be uniquely determined by n + 2
monic interpolating polynomials {f0(x), f1(x), · · · , fn+1(x)} up to a scaling constant.

Proof Suppose the first n+1 columns of A are linearly independent. By Equation (13), we
construct n + 1 equations: Row(V −1, 1) ·Λ ·Col(A, j) = 0, for j = 1, 2, · · · , n + 1. Let B be the
transpose of the submatrix consisting of the first n+1 columns of A and v = (v1, v2, · · · , vn+2)t

be the transpose of Row(V −1, 1). Thus,

0 = B · diag(λ1, λ2, · · · , λn+2) · v = B · diag(λ1, λ2, · · · , λn+2) · (λ1, λ2, · · · , λn+2)t.

Because the first n + 1 coefficients of f are linearly independent, the evaluations of them at
n + 2 random points must be linearly independent. So the rank of B is n + 1. Here v can be
expressed by explicit form of the Vandermonde matrix[27] which is a vector of polynomials of
{y0, y1, · · · , yn+1}. For generic choice of {y0, y1, · · · , yn+1}, each vi �= 0. Hence, the rank of
B · diag(λ1, λ2, · · · , λn+2) is still n + 1 and its nullity equals one. We can choose any solution
{λi} to construct f by Lagrange basis:

∑n
i=0 λifi�i.

Remark 5.4 In our algorithm, we compute {λi} starting from μ more nodes (together
with the initial node y0), and we add incrementally more nodes if necessary. But interestingly,
the experimental results show that the lower bound μ is often enough. We test 5 groups of
random polynomials, 1000 polynomials in each group, generated by the following Maple code.
[> randpoly([x, y], degree=5)+rand(−100..100)();
The success portion of correct interpolations by using μ more nodes is 82.86% on average.
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However, there exist some polynomials, for instance 29 x3+
(
60 − 11 y3

)
x2+52 y3x−5−31 y3,

where μ = 4. But the upper bound is reached, i.e., 2n = 6 more nodes are necessary for the
correct interpolation.

Algorithm 2 (Interpolation)
Input: A set of polynomials {f0(x), f1(x), · · · , fk(x)} ⊂ Z[x, y]

a set of rational numbers {y0, y1, · · · , yk}
an integer n the degree of f with respect to y

Output: f ∈ Z[x, y], such that f(x, yi) = fi(x).
1) Let A be the matrix consisting of the coefficient row vectors of the input univariate

polynomials.

2) Let r = Rank(A). If k < μ, then it needs more interpolation nodes.

3) Solve the homogenous linear system (14) to obtain the scaling constants {λ1, λ2, · · · , λk}.
4) If the solution is not unique, then it needs more interpolation nodes.

5) Else f =
∑k

i=0 λifi�i ∈ Q[x, y].

6) Return the primitive polynomial of f .

Note that we can also use a reversible linear transformation of coordinates (see the end of
Section 4) to make the leading coefficient of the resulting polynomial in x be a rational number,
rather than a polynomial in y and the resulting polynomial can be reduced to be monic in
x by dividing the leading coefficient. Then the interpolation becomes the naive one. For the
polynomial xy − 1 of Example 5.2, we can use a linear transformation⎛

⎝ x

y

⎞
⎠ =

⎛
⎝ 1 −1

−1 2

⎞
⎠ ·

⎛
⎝ x̂

ŷ

⎞
⎠ , (16)

which leads to a new polynomial x̂2 + 3
2 x̂ŷ + 1

2 ŷ2 − 1
2 and it can be interpolated by using 3

nodes with the naive method. Then, xy − 1 can be recovered from (16). Along this way, the
number of interpolating nodes can be fixed as the total degree of the original polynomial plus 1.
However, our new interpolating method needs fewer nodes in general but, unfortunately, we
can only give a range (15), rather than an exact formula on the number of nodes, as indicated
in Remark 5.4.

6 Combination of Tools

Now, we combine the tools introduced in previous sections to obtain a new factorization
algorithm. A preliminary version of the algorithm is implemented in Maple. For the efficiency,
it requires a more sophisticate version in C++. Especially, the polynomials at the interpola-
tion nodes for each factor can be computed independently. Therefore, a parallel program for
interpolation can be implemented on a more powerful machine, e.g., a computer cluster. But
in this paper we mainly focus on the theoretical aspect of the algorithm.
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6.1 Main Steps of the Algorithm

We now describe the main algorithm in this article.

Algorithm 3 (Factorization)

Input: f , a squarefree primitive polynomial f ∈ Z[x, y] such that gcd(f, fx) = 1.
Output: F , a set of primitive polynomials {f1, f2, · · · , fr} ⊂ Z[x, y], such that f =

∏
fi.

1) Apply a numerical solver to approximate the roots of f(x, y0) = 0 and f(x0, y) = 0 at
generic points x0, y0 ∈ Q.

2) Apply miniPoly to roots above and decompose the solutions. And generate the minimal
polynomials for them and we have grouping information of roots. In this step, it needs
Newton iteration to refine the roots up to desired accuracy.

3) Apply homotopy (10) to obtain the degrees of each factor.

4) For group i (corresponding to the factor fi), i = 1, 2, · · · , r, use Homotopy (7) to generate
its approximate roots at random rational numbers {y1, y2, · · · , yk}.

5) For each set of roots at yj , refine the roots to the accuracy given by Proposition 4.1, then
make the product and construct the polynomial fi(x, yj).

6) Call interpolate with the interpolating polynomials {fi(x, y0), fi(x, y1), · · · , fi(x, yk)} to
construct fi(x, y).

Remark 6.1 As mentioned before, if y0 is not a good specialization point for the Hilbert
Irreducible theorem, then the factorization is incorrect which can be easily checked by polyno-
mial division. Therefore, the algorithm fails. One obvious way is to recompute by a different
y0. Or, we have to solve a recombination problem which is difficult and it is beyond the scope
of this paper.

6.2 A Simple Example

Let us consider a polynomial f = (x y − 2) (x2 + y2 − 1). First, we choose a sequence of
random rational numbers {97/101, 1, 104/101, 123/101, 129/101, · · ·}. Substituting y = 97/101
into f yields Mignotte bound of the coefficients of factors 9170981 and the digits required to
produce the minimal polynomial is 110 by Theorem 3.1. Then compute the approximate roots
of f(x, 97/101) up to 110 digits accuracy. The miniPoly subroutine gives two groups of points:
[[1, 2], [3]] and the corresponding minimal polynomials [−792 + 10201 x2,−202 + 97 x]. By the
Hilbert Irreducibility theorem, there are two factors. On the other hand, fix the value of x and
obtain the univariate polynomials [−202 + 97 y,−792 + 10201 y2] and [[3], [1, 2]].

Starting from the first point of group one, the Homotopy (10) path ends at a point which
satisfies −792 + 10201 y2. It implies that −792 + 10201 x2 and −792 + 10201 y2 are from the
same factor of degree [2, 2]. By Equation (15), we need μ = � rn

r−1� = 4 more interpolating
polynomials which are produced by Homotopy (7). Thus, there are five polynomials [−792 +
10201 x2, x2, 615 + 10201 x2, 4928 + 10201 x2, 6440 + 10201 x2]. The scaling constants [λ1 =



EXACT BIVARIATE POLYNOMIAL FACTORIZATION OVER Q 257

1, λ2 = 10201, λ3 = 1, λ4 = 1, λ5 = 1] are obtained by System (14). Consequently, the Lagrange
interpolation formula gives the correct factor −1 + x2 + y2.

Since the degree of the other factor is [1, 1], it needs μ = 2 more polynomials and they
are [−202 + 97 x, x − 2,−101 + 52 x]. The corresponding scaling constants are [λ1 = 1/2, λ2 =
101/2, λ3 = 1] and the resulting factor is x y − 2.

6.3 Experiments

While our implementation is still young and the parallel algorithm is not implemented in
this paper, the current version is not as efficient as Maple’s factor in general. Here, we only
consider the following examples.

0 20 40 60 80 100 120
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100

101

number of factors

ti
m
e
(s
)

timemaple
timeours

Figure 1 Running time (in seconds) of Algorithm 3 and Maple’s factor

We have tested Algorithm 3 to compare its practical performance with that of Maple’s factor.
We use polynomials of form

∏s
i=1(x+y+i) for some s in the range of 2 to 120. For s = 120, the

corresponding polynomial has degree [120, 120] and height 2.1313 · · · × 10201. Figure 1 shows
the running times, suggesting that Algorithm 3 seems slightly faster than Maple’s built-in
function factor when s grows large.

We note that the running times of Algorithm 3 for general polynomials are slower than that
of factor. The main reason is that the performance of miniPoly depends on multi-precision
numerical operations, which influences on the efficiency heavily. However, it is easy to find
that the Steps 2), 4), 5), and 6) of Algorithm 3 can be parallelized. Therefore, we believe
that our algorithm will show its real advantage with a parallel implementation in an efficient
programming language.
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7 Conclusion

A new numerical method to factorize bivariate polynomials exactly is presented in this ar-
ticle. We preliminarily implemented our algorithm in Maple to verify the correctness. More
importantly, the main components of our algorithm, miniPoly, and numerical homotopy contin-
uation can be implemented directly in C++ or J++ with existing multi-precision packages, e.g.,
GNU MP library. Furthermore, these two numerical components are naturally parallelizable.
Therefore, it gives an alternative way to exact factorization which can take the advantages of
standard programming languages and parallel computation techniques widely used by indus-
tries.

As an initial step towards the new direction of obtaining exact result from approximation,
our method, currently, is not comparable with well developed symbolic factorization methods,
e.g., Hensel lifting technique. But being a different approach, it needs more work to explore its
advantages and minimize its disadvantages.

In this article, we mainly focus on bivariate case. It is quite straightforward to extend to
multivariate case. However, the number of the interpolation nodes grows exponentially as the
increasing of the number of monomials. A more practical way to deal with such difficulty is to
exploit the sparsity if the factors are sparse. It desires the further study in our future work.
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[27] Chéze G and Galligo A, From an approximate to an exact absolute polynomial factorization,

Journal of Symbolic Computation, 2006, 41(6): 682–696.

[28] Kannan R, Lenstra A K, and Lovász L, Polynomial factorization and nonrandomness of bits

of algebraic and some transcendental numbers, Mathematics of Computation, 1988, 50(181):

235–250.



260 FENG YONG, et al.

[29] Zhang J and Feng Y, Obtaining exact value by approximate computations, Science in China

Series A, Mathematics, 2007, 50(9): 1361–1368.

[30] Qin X, Feng Y, Chen J, and Zhang J, A complete algorithm to find exact minimal polynomial

by approximations, International Journal of Computer Mathematics, 2012, 89(17): 2333–2344.

[31] van der Hulst M-P and Lenstra A K, Factorization of polynomials by transcendental evaluation,

in Caviness B F, editor, EUROCAL ’85, Lecture Notes in Computer Science, 1985, 204: 138–145.

[32] Chen J, Feng Y, Qin X, and Zhang J, Exact polynomial factorization by approximate high

degree algebraic numbers, Proceedings of the 2009 Conference on Symbolic Numeric Computation,

Kyoto, Japan, 2009, 21–28.

[33] Lee T L, Li T Y, and Tsai C H, HOM4PS-2.0, a software package for solving polynomial systems

by the polyhedral homotopy continuation method, Computing, 2008, 83(2–3): 109–133.

[34] Bates D J, Hauenstein J D, Sommese A J, and Wampler C W, Bertini, Software for numerical

algebraic geometry, Available at https://bertini.nd.edu/, June 2014.

[35] Verschelde J, Algorithm 795, PHCpack, A general-purpose solver for polynomial systems by

homotopy continuation, ACM Transactions on Mathematical Software, 1999, 25(2): 251–276.

[36] Blum L, Cucker F, Shub M, and Smale S, Complexity and Real Computation, Springer, New

York, 1998.

[37] Ilie S, Corless R M, and Reid G, Numerical solutions of index-1 differential algebraic equations

can be computed in polynomial time, Numerical Algorithms, 2006, 41(2): 161–171.

[38] Morgan A and Sommese A J, A homotopy for solving general polynomial systems that respects

m-homogeneous structures, Applied Mathematics and Computation, 1987, 24(2): 101–113.

[39] Sommese A J and Wampler C W, The Numerical Solution of Systems of Polynomials Arising in

Engineering and Science, World Scientific, Singapore, 2005.

[40] Fried M, On Hilbert’s rrreducibility theorem, Journal of Number Theory, 1974, 6(3): 211–231.


